

Media in Credentials

draft

Current state of this PoA
Possible states

● brainstorm: still in infancy; major changes likely
● draft: getting reviewed; changes likely
● approved: only anticipate minor changes

○ changes accompanied by a call-out-comment
○ typos don't need comment

Daniel H Responsible

Note: Previous POC done by sklump at BCGov is ​here​, ​here​, and ​here​; it resulted in a demo
feature but not something robust yet. The brief summary for current work is that we need a way
for VCs to include (either directly, or by reference) data other than strings, numbers, and dates.
For example, we need a VC to include a photo or similar biometric template of its holder, a PDF
of a hand-written and hand-signed doc, an audio recording, a video, a genome, etc.

Assumptions

Privacy
Photos, genomes, PDFs, and other large BLOBs are strongly identifying because they are
globally unique. Defeating correlation while sharing them is conceivable, but expensive and
fraught with complication. Therefore we assume that ​A) the initial versions of this feature are
NOT privacy-preserving ​confidence=high​; B) this will be acceptable to the marketplace
confidence=medium​; and B) the user will be informed/coached appropriately;
confidence=medium​.​ Media in a credential should be thought of exactly like social security or
passport numbers in a credential: there are reasons to encode such data and share it, but the
user should be warned that doing so will eliminate their ability to remain uncorrelated. ​→ UX
requirement in C.M

HUB Maturity
DIF Hubs​ and ​similar tech​ are very early in the standardization arc--both as specs and as
implementations. Therefore, although we could build a feature that stores the media from
credentials in a hub on issuance, and that references the hub location during presentation, the
feature would be built on a shaky foundation. We assume that hubs will mature to the point
where we can build a feature that uses them, sometime in late 2020 or beyond.
confidence=high, ​risk=low​.

https://jira.hyperledger.org/browse/IS-1281
https://github.com/hyperledger/indy-hipe/pull/142
https://github.com/hyperledger/aries-cloudagent-python/pull/60
https://github.com/decentralized-identity/identity-hub/blob/master/explainer.md
https://digitalbazaar.github.io/encrypted-data-vaults/

Caveats Okay
The first delivery of the feature will be suitable for production use cases, but will have some
scale and efficiency caveats. Specifically:

● We are willing to tolerate a modest amount of ​bloat from repeated base64-encoding of
binary data​ during credential and proof exchange. This bloat might, for example, turn
1MB into 3MB--but it won’t turn 1 MB into 100MB.

● Storing large numbers of credentials with large amounts of media in them will strain a
mobile wallet’s storage subsystem, so we don’t expect customers to do this, as a general
rule.

● Individual credentials with massive amounts of media in them (say, more than a dozen
or so items) may also strain the display UX in C.M, and/or storage and transmission
mechanisms. We don’t expect customers to do this often.

● Individual media items of an unreasonable size (say, 100MB) may make handling
routines in various places run in a very suboptimal way. However, the routines shouldn’t
crash, and they should eventually succeed.

Tests
1. Acme (running Verity) can issue a credential to Bob (running Connect.Me), where a field

of the credential is a JPEG of size=~500 KB. Bob can receive the issued credential and
store it successfully. He can also display the credential; the field associated with the
image either displays an image directly in C.M, or displays a clickable action that
displays the image. The size of the message on the wire is between 500 KB and 1 MB.
Bob’s local storage grows by between 500 KB and 1 MB as a result of accepting the
credential.

2. Same scenario as #1, except that the issuer sends an incorrect attachment (the photo
doesn’t match its hash from the credential). The holder (Bob using C.M) emits a
problem-report message describing the problem accurately.

3. When Bob backs up his wallet after receiving the credential from test 1, the wallet
backup contains the image, as demonstrated by the fact that if Bob deletes the stored
image from disk and then restores the backup, the image is back on disk.

4. C-corp (running acapy that doesn’t support this feature) can challenge Bob to prove
something with his credential, where the proof request does NOT include anything
related to the image field, and a proof presentation generated by Bob with C.M is
considered valid by C-corp.

5. Acme (running Verity) can challenge Bob to prove something with his credential, where
the proof request DOES include a disclosure of the image field, and the presentation
generated by Bob with C.M will validate with Verity.

https://github.com/hyperledger/aries-rfcs/issues/341
https://github.com/hyperledger/aries-rfcs/issues/341

6. Acme (running Verity) can challenge Bob to prove something with his credential, where
the proof request DOES include a disclosure of the image field, and the presentation
generated by Bob with C.M will validate with Verity.

7. Same scenario as #6, except that the presentation includes an incorrect attachment (the
disclosed BLOB hash doesn’t match the attached photo). This should cause the verifier
to reject the proof.

8. Same scenario as #1, except that the attachment is only 1000 bytes with mime type
application/pdf, and other sizes are adjusted accordingly. All behaviors and outcomes
should be identical, except that C.M should NOT display the PDF inline, but rather offer
to launch the default handler for PDFs.

9. Same scenario as #1, except that the attachment is a 100MB .mp4 file, and other sizes
are adjusted accordingly.

10. Same scenario as #1, except that the image now includes 3 small BLOB fields (~25 KB
each) of various MIME types.

Phases
Work to deliver this feature will occur in phases, because the ecosystem isn’t mature
enough--and we are not mature enough, either--to support the fancy incarnations of this feature
that will eventually be possible. Also, the later phases are much more expensive, and they
involve more interoperability risk than we should incur right now.

Phase 1 (required)
This encompasses work that we could do in Q1 of 2020 with relatively low risk and only modest
effort. The deliverable will be a feature where any media can be attached to an issued
credential, and can be shared with a verifier as an attachment as well. This feature will be
releasable in production, but it will not be suitable for heavy use because the existing KMS
(“wallet”) in Indy SDK stores credentials in a way that’s inefficient. Reasonable use will be a
holder that has a handful of credentials with a small number of “media fields.” Unreasonable use
will be a holder that has tens of thousands of credentials with associated media; this will bloat
the wallet and make its backup problematic. We expect that phase 1 deliverables will be useful
throughout 2020 and beyond; even when later phases are delivered, phase 1 mechanisms will
remain a viable option.

Only phase 1 is required to have a production-usable feature; however, phase 2 would also be a
wise investment since it fixes some scaling issues.

Phase 2 (recommended)
In this phase, credential storage inside the KMS is changed, making it practical to hold far more
credentials that contain media. Also, the issuer, holder, and verifier codebases are upgraded to
support indirection--instead of directly transferring media during issuance or verification, only a

hyperlink to media is transferred, and downloads of the media happen separately. This lays the
foundation for credential media to be stored in a general bitbucket like imgbin, Google Drive,
DropBox, etc.

Phase 3 (optional)
This is a logical variant of phase 2, where storage is to a personal data hub as conceived by DIF
(or W3C’s encrypted data vault initiative, etc). Today, the design of hubs is not mature enough
to use them. If it is mature enough by the time we begin phase 2, perhaps we can collapse
phase 2 and phase 3. If not, then we can tackle them separately.

Phase 4 (optional)
This adds privacy features. It may begin in parallel with phase 2 or phase 3, but is unlikely to be
a sellable feature in the same timeframe. See the ​Privacy section​ for more details.

Phase 1 Approach
Document and code support for a convention for BLOB handling in credentials. (EV must raise a
community PR against RFCs 0036 and 0037 describing these conventions.) This includes:

● Fields that convey attestations from the issuer about BLOBs follow the naming
convention ​<descriptiveName>​_hashlink ​. Such fields are called ​hashed BLOB
fields​ (​HBFs​). HBFs contain a hashlink to their content, rather than the content itself. 1

● Issuers that build credentials like this should include the raw BLOB for each HBF, as an
attachment to the ​issue-credential ​ message, at the end of the issuance protocol
described in RFC 0036. This means the holder will receive the bytes of each BLOB
associated with an HBF, as part of receiving the credential itself.

● During verification (RFC 0037), a proof should include the raw BLOB for each HBF that’s
disclosed, as an attachment to the ​presentation ​ message. This means the verifier
will receive a hash of the BLOB as a disclosed field value, plus the raw bytes of the
BLOB as an attachment, and can compare the two to ensure correctness.

● The verification procedure coded in indy-sdk must be updated to account for this
convention, such that a verification of a proof involving HBF fields compares the hash
against the bytes of a BLOB.

● C.M should be updated so it displays HBF credentials as if the BLOBs were inlined (the
UX is that the user feels like the credential contains their photo or PDF). It should also
warn the user about the privacy consequences of disclosing such BLOBs, and it should
generate the correct proof for a proof request request that asks for an HBF to be
disclosed.

1 Hashlinks are currently described in a somewhat immature draft IETF RFC. They are basically URLs
that include a hash of the content so the content can be recognized as unmodified, even if downloaded
from a different place. See ​https://tools.ietf.org/html/draft-sporny-hashlink-04​.

https://tools.ietf.org/html/draft-sporny-hashlink-04

Separate from the convention, but part of our phase 1 delivery, is C.M’s storage of credentials
that have associated BLOBs. It would be preferable to store these BLOBs outside the KMS, and
to update the KMS such that BLOBs are incorporated in the KMS only by reference (KMS
stores/indexes a path to where they are stored on disk, never the actual bytes). However, if we
must store the BLOBs directly in the KMS in phase 1, that is an acceptable fallback position.

The answer to the need in the previous paragraph (where to store the BLOBs) will affect KSM
(wallet) backup. If we store the BLOBs inside the KMS, then the KMS backup will automatically
include BLOBs. This imposes almost no new cost on us, but it makes backups problematic
because they will quickly become large, and it won’t be possible to treat BLOBs separate from
private key data for backup purposes. If, on the other hand, we modify the storage of BLOBs so
we only place a ​path​ in the KMS, but not the BLOB itself, then we have to add a feature to our
wallet backup where content in paths outside the KMS are also part of the backup scope by
default. Possibly we could add a feature to make this optional/selectable, in a later phase.

Also separate is the way C.M’s UX will be updated to display credentials using this mechanism.
The assumption is that images (and possibly video?) would be displayed inline with other
attributes, but that other types of BLOBs (e.g., PDFs, biometrics) would be displayed as a link to
a file that invokes its default handler on the platform.

Staged Delivery
● Draft an update to RFCs 0036 and 0037, describing the above conventions, and share

via PR with the community. ​ Milestone: RFC Draft ​.
● Modify Verity so its issuing code understands and automatically uses these conventions

(hashing BLOB as the HBF field content; attaching the BLOB to the
issue-credential ​ message) anytime it sees a field in a schema named *_hashlink.

● Modify the Indy/Aries KMS so it supports storing BLOBs--preferably by dumping them in
a folder outside the KMS, and storing only a path, but optionally just storying the bytes of
the BLOBs in the KMS itself (non-secrets API).

● Modify C.M so it displays HBF creds correctly by looking up the MIME type of the HBF
field and invoking a default handler for that MIME type. (Images may be specially
handled inline in C.M’s display, whereas PDFs and other types may load a different app
or a browser?)

Appendix: Privacy-respecting BLOBs

If a BLOB is simply disclosed, it becomes a strong correlator. To prevent correlation, the
following techniques are possible:

● Verifiable computation (e.g. ZK-SNARKs) can be used to permute what’s disclosed. The
permutation algorithm will be different for different types of data (e.g., changing a pixel in
an image requires one algorithm; slightly shifting an attribute in a fingerprint requires a a
different algorithm; changing a harmless header in a .PDF requires yet another
algorithm). This proof is expensive to generate and verify. We’ve done a POC of it, and it
does work in concept, but it seems like an expensive feature to implement, and it
wouldn’t be usable with mime types that don’t have an implemented permutation
algorithm.

● Multiple references to what’s logically the same BLOB, pre-permuted by the issuer, could
be embedded in the same credential (e.g., 100 variants of the same mug shot). The
prover could choose one at random (or very deliberately) to break correlation.

● The disclosure could be to a randomly chosen third party that agrees to permute it
before passing it along. The permuter could be crowd-sourced. There would be no
incentive to cheat, but also no need to do verifiable computation.

● With BLOBs that are biometrics, multiple low-fidelity biometrics can be embedded,
instead of or in addition to a single high-fidelity value. This allows progressively greater
confidence with progressively greater disclosure. This technique is described in more
detail ​here​.

● Also with BLOBs that are biometrics, proof of biometric match can be done by a different
party from proof of match of all other attributes. The biometric service provider (BSP)
sees only the biometric data, never anything else--and the normal verifier sees only the
other data, never the biometric. This diffuse trust may be better than nothing, although
the BSP and the verifier could collude. This is discussed in more detail ​here​.

https://docs.google.com/document/d/1f5KRRXcfgnvW6cjjcCrgCCtdo-0tJDTC1574emDBigg/edit#heading=h.vsvjtapu0c56
https://docs.google.com/document/d/1f5KRRXcfgnvW6cjjcCrgCCtdo-0tJDTC1574emDBigg/edit#heading=h.m3dms66gsgen

